Search results

1 – 4 of 4
Article
Publication date: 21 September 2015

Moumita Das, Jack C.P. Cheng and Kincho H. Law

The purpose of this paper is to present a framework for integrating construction supply chain in order to resolve the data heterogeneity and data sharing problems in the…

1453

Abstract

Purpose

The purpose of this paper is to present a framework for integrating construction supply chain in order to resolve the data heterogeneity and data sharing problems in the construction industry.

Design/methodology/approach

Standardized web service technology is used in the proposed framework for data specification, transfer, and integration. Open standard SAWSDL is used to annotate web service descriptions with pointers to concepts defined in ontologies. NoSQL database Cassandra is used for distributed data storage among construction supply chain stakeholders.

Findings

Ontology can be used to support heterogeneous data transfer and integration through web services. Distributed data storage facilitates data sharing and enhances data control.

Practical implications

This paper presents examples of two ontologies for expressing construction supply chain information – ontology for material and ontology for purchase order. An example scenario is presented to demonstrate the proposed web service framework for material procurement process involving three parties, namely, project manager, contractor, and material supplier.

Originality/value

The use of web services is not new to construction supply chains (CSCs). However, it still faces problems in channelizing information along CSCs due to data heterogeneity. Trust issue is also a barrier to information sharing for integrating supply chains in a centralized collaboration system. In this paper, the authors present a web service framework, which facilitates storage and sharing of information on a distributed manner mediated through ontology-based web services. Security is enhanced with access control. A data model for the distributed databases is also presented for data storage and retrieval.

Details

Engineering, Construction and Architectural Management, vol. 22 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 February 2015

Soumya Das, Pradip K Sadhu, Suprava Chakraborty, Malayendu Saha and Moumita Sadhu

In this paper, life cycle economic analysis (LCEA) of stand-alone solar photovoltaic (PV) modules is performed. It is tested for their commercial prospects in remote regions of…

188

Abstract

In this paper, life cycle economic analysis (LCEA) of stand-alone solar photovoltaic (PV) modules is performed. It is tested for their commercial prospects in remote regions of India, which do not have a direct access of grid supply. Availability of grid supply depends on the population density. Solar PV technology is one of the first among several renewable energy technologies that have been adopted worldwide for meeting the basic needs of generation of electricity particularly in remote areas. Overall lifetime expenditures related to the power projects are analyzed and compared with the help of net present worth (NPW) theory. In the context of a developing country like India, it is found that the cost effectiveness of conventional or ‘green’ power driven sources depends on kW rating of generators and daily demand of consumers. The demand coverage, which would determine the commercial viability of renewable and non-renewable sources is calculated considering the practical power rating of generators available in the local market. This study is intended to assist planning of financial matters with regard to installing small to medium scale electric power generation using solar PV module in remote areas of India.

Details

World Journal of Engineering, vol. 12 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 10 November 2020

Abstract

Details

Financial Issues in Emerging Economies: Special Issue Including Selected Papers from II International Conference on Economics and Finance, 2019, Bengaluru, India
Type: Book
ISBN: 978-1-83867-960-6

Article
Publication date: 23 December 2015

Sudhir Chitrapady Vishweshwara and Jalal Marhoon AL. Dhali

Sultanate of Oman witness a long summer with mostly clear blue skies and typically higher ambient temperatures as seen in other GCC countries. This type of environment warrants…

Abstract

Sultanate of Oman witness a long summer with mostly clear blue skies and typically higher ambient temperatures as seen in other GCC countries. This type of environment warrants the use of high capacity and reliable air conditioning systems, both at resident buildings and vehicles. During summer, cars parked directly under the sun, experience a very high temperature rise inside its cabin in the range of near to 50 °C. This high cabin air temperature often causes thermal discomfort to passengers entering the parked car and also has a serious impact on the cars air-conditioning systems, as it takes longer time to bring back the thermal comfort inside the cabin. The studies also revealed that the high cabin temperature often causes health hazards to occupants, especially to infants. Current research paper, reports an experimental study carried out on a parked car, with instrumentation to identify the various the temperature zones inside the car cabin. This experiential study is aimed to improve the thermal comfort inside the cabin through solar powered cabin air ventilator for effective management of cabin air temperature. The study was carried on a chosen vehicle parked at a set direction and location exposed to day long sunlight at Muscat for considerable period of time. Firstly, the study identified the various temperature zones inside the car cabin and ventilation driven with a 10 Wp solar panel was developed to accomplish the required air exchange inside the cabin, along with continues instantaneous heat rejection through steady air exchange between inside and outside environment. A simple ventilator was developed by means of two fans which drove out the hot trapped air and a secondary fan to cool down the temperature inside the car by providing fresh air for limited time. The experimental investigation showed that the vehicle cabin temperature was typically 10 °C lower when ventilator was turned on. On a typical day on month of May, the cabin air temperatures was approximately 21 °C higher than the ambient air temperature, while with the developed ventilator the difference between the cabin and outside air temperature was reduced by 50% approximately. With the ventilator in operation, it was observed that time taken to reduce the cabin air temperature through vehicle air conditioning system to a satisfactory level was much quicker; typically it took less than the half of the time compared to those values tested without ventilator. Thus indicating, the power saving potential of the developed system as the desired level of thermal comfort can be achieved within the shorter period of time. The reduction in time taken to cool down the cabin temperature to the acceptable limits has direct two fold effects; firstly, the fuel consumption for cooling purpose is reduced and secondly, increased thermal comfort level inside the cars cabin. However, the temperature drop pattern was not similar all around the cabin, due to the varied level of cabin sunlight exposure. Temperature drop at the front of the car was lower than in middle and rear of the car. From the study it can be concluded that, with solar powered ventilator, the temperature inside the car was nearly 10 °C lesser compared to cabin without ventilator and it also helps in to bring back the thermal comfort inside the cabin nearly within half time vis-à-vis cabin without ventilation.

Details

World Journal of Engineering, vol. 12 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 4 of 4